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The full-scale war in  Ukraine has caused unprecedented anthropogenic pressure on the  soil cover, manifested 
in the complex degradation of its physical, chemical, and biological properties. This review article summarizes current 
data on the forms of soil degradation in combat zones, including mechanical destruction of structure, compaction, 
erosion processes, salinization, as well as chemical contamination by heavy metals, explosives, petroleum products, 
and combustion residues. Particular attention is paid to changes in  soil microbiota, which serves as a  sensitive 
indicator of ecological condition. Structural and functional shifts in microbial communities, reduction of enzymatic 
activity, and disruption of organic matter mineralization processes are analysed as reliable bioindicators of soil 
degradation. The  article discusses modern approaches to ecological rehabilitation of affected areas through 
the use of plants and microorganisms. Special emphasis is placed on phytoremediation technologies that combine 
the ability of plants to accumulate, transform, and detoxify toxicants with the restoration of biogeochemical element 
cycling. The feasibility of using indicator and resistant plant species for the remediation of soils contaminated with 
heavy metals and explosive residues is also substantiated. It is concluded that a  comprehensive assessment of 
microbiological, enzymatic, and physicochemical parameters is a necessary prerequisite for developing effective 
strategies for soil ecological rehabilitation in the post-war period. The results of the review can be used to formulate 
scientifically grounded recommendations for restoring the ecological stability of Ukraine’s agro-landscapes and for 
planning long-term soil and biodiversity conservation measures.
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Introduction
Soils are among the  most important components of 
the  biosphere, ensuring food security, supporting 
biodiversity, and playing a  key role in  climate 
regulation (FAO, 2015; Lehmann et al., 2020). During 
armed conflicts, they become some of the  first 
targets of anthropogenic impact, leading to long-term 
environmental consequences (Certini, 2005; Lawrence 
et al., 2015; Baumann and Kuemmerle, 2016; Rawtani 
et al., 2022).

With the onset of the full-scale aggression of the Russian 
Federation against Ukraine in  2022, the  extent of 
soil cover degradation has increased significantly, 
especially in  frontline regions. It is estimated that 
more than 139,000 km² of Ukrainian territory have 
been affected by military contamination, with annual 
economic losses exceeding USD 11 billion due to 
the inaccessibility of mined agricultural lands (Tonkha 
et al., 2025). At the same time, over 15 million hectares 
of land are experiencing various forms of degradation – 
chemical, physical, and biological.

Particular concern is caused by the  degradation 
of Ukrainian chernozems, some of the  most fertile 
soils in  the world. More than 5 million hectares have 
been damaged as a  result of hostilities, including 
contamination by heavy metals, explosives, and erosion 
processes (Baliuk et al., 2024). The  war also poses 
a severe threat to biodiversity: about 30% of Ukraine’s 
protected natural areas are at risk of ecological 
destruction (Hoptsii and Anoprienko, 2023; Kuzmenko 
et al., 2024; Horoshkova et al., 2024).

In recent years, there has been a  noticeable 
increase in  scientific interest in  the  environmental 
consequences of the  war in  Ukraine, particularly its 
impact on soil resources. An increasing number of 
researchers are focusing on assessing the  ecological 
and economic impacts of armed aggression, analyzing 
soil degradation processes, the scale of contamination, 
and the loss of agricultural potential. Such studies play 
a  crucial role in  forming the  scientific basis for land 
restoration, developing environmental strategies, and 
justifying the  need for international support (Baliuk 
et al., 2022, 2024; Kucher, 2022; Zaitsev et al., 2022; 
Bonchkovskyi et al., 2023; Drobitko et al., 2023; 
Drobitko and Alakbarov, 2023; Kulish, 2023; Hoptsii & 
Anoprienko, 2023; Solokha et al., 2024; Splodytel et al., 
2023; Kuzmenko et al., 2024; Tonkha et al., 2025).

As noted by Certini et al. (2013), regions that have 
experienced intensive military operations involving 
explosives and ammunition become major hotspots 
of terrestrial ecosystem contamination. Gunfire and 

explosions are particularly dangerous for agricultural 
landscapes, as they reduce soil fertility and cause 
contamination of the  “soil-plant-human“ chain (Lima 
et al., 2011). According to estimates by the  World 
Bank, the  Government of Ukraine, and the  European 
Commission, the  regions most affected by the  full-
scale invasion of 2022 are Luhansk (100%), Kherson 
(95%), Chernihiv (80%), Zaporizhzhia (74%), Sumy 
(70%), and Donetsk (64%) oblasts. Overall, hostilities, 
occupation, and landmines have affected about one-
third of the country’s territory (Nykolyuk et al., 2024).

Each missile or artillery shell explosion releases 
a substantial amount of toxic substances into the soil – 
over 60 kg per single detonation. These pollutants 
primarily include carbon monoxide, nitrogen dioxide, 
heavy metals, and residues of solid rocket fuel (Greaves 
and Hunt, 2022). Historical evidence shows that 
military conflicts of the 20th–21st centuries – from World 
War I to the wars in Vietnam, Myanmar, and the former 
Yugoslavia – have led to long-term destruction of soil 
profiles, accumulation of toxic metals, and explosive 
residues (Appau et al., 2021; Shukla et al., 2023). 
In many European regions where battles occurred more 
than a  century ago, concentrations of heavy metals 
in the soil still exceed permissible limits by hundreds 
of times, indicating the extremely slow pace of natural 
self-purification and the  need for bioremediation 
approaches.

For Ukraine, this issue is particularly critical, as the war 
is taking place on highly productive agroecosystems. 
According to Chowdhury et al. (2023), the consequences 
of the  russian-Ukrainian war have a  profoundly 
negative impact not only on soil fertility but also on 
food security, energy stability, and ecosystem integrity.

Drobitko et al. (2023) report that military actions 
cause significant soil contamination with heavy metals 
and explosive compounds, which exert prolonged 
adverse effects on the  environment. Therefore, 
systematic monitoring and the  implementation 
of bioremediation technologies are essential for 
the rehabilitation of affected areas. The contamination 
of agricultural lands considerably decreases soil 
fertility and agroecosystem productivity. Fiott (2022) 
emphasizes that pesticides and explosive residues can 
alter the  chemical composition of soils, diminishing 
their ability to sustain plant growth. Consequently, 
developing a  soil restoration strategy that includes 
targeted agrotechnical measures and the introduction 
of stress-resistant plant varieties is imperative.

Bluszcz and Valente (2020) emphasize that 
contamination by explosives and their degradation 
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products poses a  serious threat to agricultural 
lands, as these compounds adversely affect soil 
microorganisms responsible for maintaining fertility 
and nutrient cycling. According to Belcher et al. (2019), 
microorganisms involved in  humus formation are 
highly sensitive to toxins, leading to the deterioration of 
soil structure and a decline in its biological productivity.

Studies by Drobitko and Alakbarov (2023) have 
demonstrated that in  areas affected by hostilities, 
the  concentrations of metals in  soils significantly 
exceed permissible limits, posing a  substantial risk 
to ecological stability. Such contamination may have 
long-term consequences for local populations through 
direct contact with toxic soils and contaminated water 
resources.

This review aims to systematize current scientific 
knowledge on the forms of soil degradation caused by 
military activities across Ukraine, to assess the impacts 
of toxicants on soil microbiota, and to identify prospects 
for ecological rehabilitation through bioindication 
and phytoremediation approaches. The  research 
holds considerable practical significance for the  M.M. 
Gryshko National Botanical Garden of the  National 
Academy of Sciences of Ukraine, where comprehensive 
studies are being conducted on the restoration of post-

war ecosystems and the assessment of biotic resilience 
under anthropogenic stress.

1	 Forms and Drivers of Soil Degradation 
	 in Combat Zones
Soil degradation in areas affected by military operations 
occurs at three principal levels:

	z physical – compaction, structural destruction, and 
alteration of the pore system;

	z chemical – accumulation of toxicants, including 
heavy metals, explosive residues, and petroleum 
products;

	z biological – reduction in  the  abundance and 
activity of soil microorganisms, disruption of 
biochemical processes, and degradation of biotic 
interactions (Garten et al., 2003; Certini et al., 
2013; Didenko, 2024; Solokha et al., 2024).

1.1	 Physical Damage
Physical damage to soils is primarily caused by the direct 
impact of explosions, shock waves, and the movement 
of heavy military machinery. The  main consequences 
include the  formation of craters, disruption of soil 
profiles, compaction, and reduced water permeability 
and aeration (Figure 1). Such alterations critically 

Figure 1	 Formation of craters in the soil due to explosive detonations, leading to physical degradation and disruption of soil 
structure
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affect plant development, diminish the habitat available 
for soil organisms, and impair the  soil’s natural self-
purification capacity (Whitecotton et al., 2000; Prosser 
et al., 2020).

Compaction leads to a decrease in porosity, disruption 
of air and water regimes, and reduced oxygen 
availability for plant roots. The  loss of macroporosity 
limits water infiltration, increases the  risk of surface 
runoff and erosion, and contributes to the  formation 
of degraded soil layers with low biological productivity 
and diminished regenerative capacity under prolonged 
physical stress.

1.2	 Chemical Contamination
Military activities are a significant source of chemical 
contamination of soils. The  primary contributors 
include residues from destroyed military equipment, 
fragments of missiles, artillery shells, mines, grenades, 
and other explosive devices (Figure 2), which pose 
serious environmental threats (Lawrence et al., 2015; 
Bonds, 2016; Rawtani et al., 2022; Solokha et al., 2024). 

As a  result of hostilities, soils become contaminated 
with heavy metals (Pb, Cu, Zn, Cd, Cr, Ni), petroleum 
products, polymers, asbestos, and explosive residues, 

Figure 2	 Fragments of missiles (A) and residues of destroyed military equipment (B) as sources of soil degradation 
in combat zones

(A)

(B)
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such as trinitrotoluene (TNT), hexogen (RDX), and 
octogen (HMX).

An additional source of toxicants is the  destruction 
of infrastructure (Figure 3), particularly buildings 
containing hazardous materials such as asbestos, lead, 
plastics, paints, and petroleum products, which enter 
the soil along with debris. Large areas of agricultural 
land – including crop fields and meadows – are 
subjected to shelling, landmining, or occupation by 
abandoned military vehicles (tanks, armored personnel 
carriers, civilian cars). These conditions not only hinder 
agricultural use but also contribute to further chemical 
contamination through fuel and lubricant leaks and 
corrosion of metallic components (Figure 4).

Persistent organic compounds and heavy metals, which 
retain their toxicity for decades, pose the  greatest 
threat (Kalderis et al., 2011; Pichtel, 2012). Of 
particular concern is RDX, a highly mobile compound 
with low sorption potential, capable of leaching 
into groundwater and contaminating water sources 

in active combat areas (U.S. EPA, 1999; Clausen et al., 
2004). 

Studies of former military training grounds and 
munitions production sites have revealed elevated 
concentrations of toxic compounds, including 
2,4-dinitrotoluene, TNT residues, RDX, and heavy 
metals such as Sb, Pb, and U (Schwenk, 2018; Tešan et 
al., 2018; Fernandez-Lopez et al., 2022; Broomandi et 
al., 2020; Shukla et al., 2023). These findings underscore 
the  need for multi-tiered remediation strategies that 
consider both the chemical properties of toxicants and 
the characteristics of the soil environment.

Emissions of heavy metals during explosions, material 
combustion, and equipment corrosion (Pb, Cu, Cd, Sb, Cr, 
Ni, Zn) result in contamination of both soils and aquatic 
systems, with bioaccumulation in  living organisms. 
Biomonitoring studies confirm the  accumulation of 
these elements in trophic chains, leading to suppressed 
reproductive function, metabolic disorders, and overall 
reductions in  ecosystem productivity (Singh et al., 

Figure 4	 Remnants of military equipment and abandoned civilian vehicles on agricultural fields, hindering soil cultivation 
and contributing to degradation

Figure 3	 Destroyed buildings and infrastructure in frontline regions contribute to soil contamination with toxic substances 
and debris
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2018; Tovar-Sánchez et al., 2018; Skalny et al., 2021; 
Kicińska et al., 2022; Yao et al., 2023).

A separate case of anthropogenic catastrophe is 
the  destruction of the  Kakhovka Hydroelectric 
Plant in  2023. According to the  United Nations, over 
90,000  tons of bottom sediments containing toxic 
elements (As, Ni, Zn) were dispersed into the  soils 
and waters of the  lower Dnipro, creating a  long-
term environmental threat to agricultural lands and 
biodiversity (UNDP, 2023; Washington Post, 2024; 
Chemistry World, 2025).

1.3	 Biological Degradation
Armed conflicts lead to profound alterations in the soil 
biosphere, disrupting the  functional structure 
of microbial communities, reducing enzymatic 
activity, and disturbing biogeochemical cycles (Pal 
et al., 2021; Tauqeer et al., 2021; Flores et al., 2025). 
The accumulation of toxicants, particularly heavy metals 
and explosive residues, suppresses the  metabolism 
of soil microorganisms, causing a decline in microbial 
diversity, destruction of symbiotic relationships, and 
a loss of the soil’s self-regenerative capacity.

A key factor in biological degradation is the destruction 
of natural vegetation – forests, shelterbelts, meadows, 
and steppe lands – which play a  crucial role in  soil 
stabilization, erosion control, water balance regulation, 
and biodiversity conservation (Figure 5). Extensive 
fires, shelling, and landmining lead to the degradation 
of these ecosystems, especially in  steppe regions, 
where shelterbelts often represented the  only 
barrier against wind and water erosion. Vegetation 
loss promotes humus depletion, decreases biomass, 
reduces buffering capacity, and increases vulnerability 
to climatic extremes.

A separate ecological threat is posed by the  mass 
mortality of wild and domestic animals, which often 
remain in open areas or enter water bodies (Figure 6). 
The decomposition of organic remains without proper 
disposal causes microbial and chemical contamination 
of soils and waters, including the spread of pathogenic 
microorganisms, water quality deterioration, and 
destabilization of soil microbial communities. 
Such processes increase risks to human health and 
ecosystem resilience in post-conflict regions.

2	 Impact of Toxicants on Soil Microbiota
Soil microbiota is a critical component of ecosystems, 
mediating nutrient cycling, organic matter 
transformation, maintenance of soil structure, and plant 
protection. However, military activities – particularly 
explosions and contamination with heavy metals (Cd, 
Pb, Zn, Cu) and explosive residues (TNT, RDX, HMX) – 
substantially disrupt the structure and functioning of 
microbial communities (Giller et al., 1998; Stefanowicz 
et al., 2008; Corredor et al., 2024; Rodríguez-Seijo et al., 
2024).

Toxicants reduce microbial abundance, suppress 
metabolic activity, and cause trophic imbalances 
(Khan et al., 2008; Rousk et al., 2010). Enzymatic 
indicators are particularly sensitive: dehydrogenase, 
phosphatase, and urease activities sharply decline, 
reflecting an overall decrease in soil microbial viability 
(Elgh Dalgren et al., 2009; Panz et al., 2013; Lin et al., 
2022).

Metagenomic studies also indicate a reduction in genes 
associated with nitrogen fixation, degradation of 
organic compounds, and xenobiotic breakdown (Yang 
et al., 2023). In  combat zones, microbial diversity 

Figure 5	 Damaged and destroyed forests, shelterbelts, and protective strips leading to soil degradation, loss of erosion 
control, and reduced biodiversity

http://www.uniag.sk


ISSN 2585-8246– 316 –Slovak University of Agriculture in Nitra
www.uniag.sk

Agrobiodivers Improv Nutr Health Life Qual, 9, 2025(2): 310–329

decreases and communities shift towards stress-
tolerant taxa (e.g., Actinobacteria), while populations 
of nitrogen-fixing bacteria (Rhizobium, Frankia), 
mycorrhizal fungi, and functionally important genera 
(Pseudomonas, Bacillus, Streptomyces) decline (Giller 
et al., 1998; Yang et al., 2021; Flores et al., 2025).

Reduced activity of symbiotic bacteria, particularly 
Rhizobium, impairs nitrogen nutrition in  leguminous 
crops, directly affecting agricultural productivity 
(Liu et al., 2016). Studies in Ukraine have shown that 
soils contaminated with explosive residues exhibit 
a  2–4-fold reduction in  microbial enzymatic activity 
compared to control sites (regional studies, 2023).

A separate concern is the decomposition of carcasses 
of domestic and wild animals, forming local “carcass 
decomposition hotspots“ (CDHs), where soils become 
saturated with organic compounds, ammonium, 
fatty acids, cadaverine, and pathogens, suppressing 
autotrophic and saprotrophic microbial populations 
(Cobaugh et al., 2015; Metcalf et al., 2016). In aquatic 

systems, this process contributes to eutrophication, 
hypoxia, and proliferation of opportunistic pathogens 
(Gwyther et al., 2011). Contaminated water may act 
as a  vector for pathogens such as Bacillus anthracis, 
Leptospira spp., and Brucella spp.

Assessment of soil microbial status forms the  basis 
for microbial bioindication of degradation. Key 
approaches include analysis of total bacterial and 
fungal abundance, fungal-to-bacterial ratios, G⁺/
G⁻ bacterial ratios, biodiversity indices (e.g., Shannon 
index), and enzymatic activity (Dick, 1994; Burns et al., 
2013). These indicators serve as sensitive measures of 
soil quality and the effectiveness of remediation efforts.

Restoring microbial balance in soils affected by military 
activities is critical. Promising approaches include 
biostimulation and bioinoculation using autochthonous 
or adapted microorganisms (Khan et al., 2013; Alori et 
al., 2022; Anekwe et al., 2024; Sanjana et al., 2024). 
In  addition, the  use of stress-tolerant microbiomes, 
including genera such as Arthrobacter, Burkholderia, 

Figure 6	 Mass mortality of cattle in a water body – a consequence of military actions, causing water contamination and 
deterioration of the regional ecological status
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and Paenibacillus, can facilitate the restoration of soil 
fertility even under residual contamination conditions 
(Vincze et al., 2024).

Soil contamination resulting from military activities 
causes profound disruptions in  the  structure and 
function of soil microbiota, manifesting as reduced 
biodiversity, suppressed enzymatic activity, and 
impaired nutrient cycling. These changes decrease 
the  ecological resilience of agroecosystems and 
necessitate microbial-oriented rehabilitation 
strategies, including bioindication, biostimulation, and 
the use of stress-tolerant microorganisms.

3	 Bioindication of Degraded Soils
Soil enzymatic activity is among the  most sensitive 
bioindicators of changes in  the  structural and 
functional organization of soils, responding rapidly to 
anthropogenic and technogenic pressures, including 
military activities (Nannipieri et al., 2012). Soil 
enzymes are closely linked to microbial activity, 
root exudates, and plant and animal residues, and 
participate in numerous biochemical processes such as 
organic matter mineralization and the transformation 
of nitrogen, phosphorus, and sulfur, which are critical 
for maintaining soil fertility (Dick, 1994; Burns et al., 
2013).

Dehydrogenase activity is particularly sensitive and 
is widely used as an indicator of the  functional state 
of the soil microbiota. Reductions in  its activity often 
correlate with the  intensity of contamination and 
structural soil damage (Das and Varma, 2010). Activities 
of other enzymes, including urease, phosphatase, and 
catalase, are also informative, reflecting the viability of 
soil biota and the soil’s capacity for self-recovery (Dick, 
1994; Burns et al., 2013).

In areas affected by military actions, a  sharp 
decline in  the  activity of key soil enzymes, such as 
dehydrogenase, urease, phosphatase, and catalase, 
has been observed. This decline is associated with 
disruption of the  microbial community, impaired 
aeration, pH alterations, accumulation of heavy metals, 
explosive residues, and toxic combustion by-products 
(Perelo, 2010). 

Explosive compounds, such as RDX (hexogen) and TNT 
(trinitrotoluene), inhibit the activity of redox enzymes, 
inducing oxidative stress in  soil microorganisms 
(Adam et al., 2007). Heavy metals can irreversibly 
bind enzyme active sites or replace essential cations, 
thereby altering enzymatic functionality (Giller et al., 
1998).

Soil microbial communities represent one 
of  the  most sensitive and informative indicators 
of  soil ecosystem status. Microorganisms respond 
to changes in  physicochemical properties, including 
contamination by toxic substances, structural damage, 
and alterations in moisture and aeration – factors that 
are particularly relevant in  conflict zones (Rousk et 
al., 2010). Assessing microbial diversity, activity, and 
functional potential provides an effective means to 
evaluate the degree of soil degradation and predict its 
recovery potential.

Military activities result in  mechanical damage to 
the  soil cover and contamination with explosive 
residues, heavy metals, and combustion by-products, 
negatively affecting soil microbiota. A  sharp decline 
in  the abundance and activity of soil microorganisms 
disrupts biogeochemical cycles, including those 
of nitrogen, carbon, and phosphorus (Singh et al., 
2014). Toxic explosive compounds exhibit high 
bioaccumulation potential and inhibit the development 
of microbial populations responsible for organic matter 
degradation and detoxification (Kalsi et al., 2020).

Key bioindicators of soil status reflect the  overall 
condition of the microbial community. Total microbial 
abundance serves as a basic indicator of soil biological 
activity, correlating with fertility and structural 
integrity of the  ecosystem (Nannipieri et al., 2017). 
Bacterial and fungal abundance can be assessed using 
both culture-based and molecular methods (Fierer et 
al., 2007).

Symbiotic activity, including mycorrhizal development 
and Rhizobium activity, is a  crucial indicator of soil 
viability. Loss of these symbioses signals ecosystem 
disruption and toxic effects of pollutants (Giller et al., 
1998; Smith and Read, 2008). Biodiversity indices 
(e.g., Shannon, Simpson) reflect the ecological stability 
of the  microbiota, with decreases indicating stress 
conditions (Lauber et al., 2009).

The ratio of functional groups, such as ammonifiers 
and denitrifiers, serves as a  marker of nitrogen cycle 
balance, with disruptions indicating ecosystem 
degradation (Hallin et al., 2018).

For more in-depth analyses, molecular methods 
such as PCR and 16S rRNA sequencing are applied, 
enabling identification of key microorganisms that 
can be used as bioindicators or bioremediation agents 
(Thompson et al., 2017). Classical cultivation methods 
remain important, though they capture only a fraction 
of microbial diversity (Amann et al., 1995). Functional 
assessments are performed using Biolog EcoPlates 
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and bioinformatic platforms such as PICRUSt and 
FAPROTAX (Langille et al., 2013; Louca et al., 2016).

Integration of enzymatic activity analysis into ecological 
monitoring systems for military-affected lands allows 
evaluation of functional stress levels, identification of 
highly degraded areas, and assessment of remediation 
effectiveness (Nannipieri et al., 2012; Burns et al., 
2013). Enzymatic reactions reflect the  interaction of 
microbial communities with abiotic soil factors, which 
is particularly evident under anthropogenic pressure 
(Krčmar et al., 2018).

Functional processes related to organic matter 
decomposition and nutrient cycling, particularly 
nitrogen, can be quantitatively characterized by soil 
enzyme activity, serving as bioindicators of ecosystem 
status (Cofie et al., 2014). Studies of soils near 
industrial areas have shown that increasing heavy 
metal concentrations are accompanied by suppressed 
enzymatic activity and reduced microbial diversity 
(Ahmad et al., 2018). Similar patterns were confirmed 
experimentally through artificial metal addition: 
urease, alkaline phosphatase, and xylanase activities 
in soils contaminated with Zn, Cu, Ni, V, and Cd were 
significantly lower than in control samples (Kandeler 
et al., 1996; 1999). 

Thus, soil enzymatic activity and the composition and 
functional capacity of microbiota are highly sensitive 
bioindicators of soil ecosystem degradation caused by 
military activities. Analysis of these indicators enables 
rapid detection of contamination and structural 
disturbances and provides an effective means of 
monitoring the  success of ecological rehabilitation 
measures, which is critical for restoring soil fertility 
and ecosystem stability.

4	 Strategies for Ecological Rehabilitation

4.1	 Phytoremediation as a Soil Rehabilitation 
	 Strategy for Areas Degraded by Military 
	 Activities

Phytoremediation is an environmentally safe and cost-
effective method for the remediation of contaminated 
soils and aquatic ecosystems using higher plants, 
leveraging their innate physiological and biochemical 
capabilities (Sun et al., 2018; Ashraf et al., 2019; 
Shah et al., 2024; Oubohssaine and Dahmani, 2024). 
In the context of the war in Ukraine, where extensive 
areas are contaminated with heavy metals, explosive 
residues, and petroleum products, this approach is 
particularly relevant, as it reduces environmental 
risks and contributes to the protection of public health 
(Ghosh and Singh, 2005; Pichtel, 2012). 

The method relies on the  ability of plants to 
accumulate, stabilize, or transform toxic compounds, 
enabling the restoration of soil ecosystem functionality 
with minimal landscape disturbance and without 
the  need for high-cost technologies. Key mechanisms 
of phytoremediation include phytoextraction, 
phytostabilization, phytovolatilization, and 
phytorhizofiltration (Meagher, 2000; Yan et al., 2020; 
Park and Oh, 2023; Hu et al., 2024; Oubohssaine and 
Dahmani, 2024), which can be applied to ecosystem 
recovery in conflict-affected regions of Ukraine:

	z Phytoextraction (also known as 
phytoaccumulation or phytosequestration) is 
a  primary mechanism of phytoremediation, 
whereby plants absorb contaminants from soil 
or water through their roots and translocate 
and accumulate these toxicants in  aboveground 
biomass, particularly in  leaves and stems 
(Jagetiya and Kumar, 2020; Sharma et al., 2024). 
Typical contaminants targeted by phytoextraction 
include heavy metals such as lead (Pb), cadmium 
(Cd), zinc (Zn), and explosive compounds 
such as cyclotrimethylenetrinitramine (RDX). 
Subsequent removal of these toxic substances 
is achieved through harvesting and disposal of 
the  aboveground plant biomass, making this 
method a  promising alternative to conventional 
soil remediation technologies (Ali et al., 2013; 
Pilon-Smits, 2005).

	z Phytovolatilization is the  process by which 
contaminants are converted into volatile forms, 
for example, mercury, and subsequently released 
through plant leaves. This mechanism reduces 
contaminant concentrations in  the  soil solution, 
although careful monitoring of atmospheric 
emissions is required (Rylott and Bruce, 2019; 
Shen et al., 2021; Pang et al., 2023).

	z Phytorhizofiltration involves the  purification 
of water and soil pore solutions through plant 
roots that absorb and transform pollutants. 
This  mechanism is particularly important 
for reducing contamination of groundwater 
(DalCorso et al., 2019; Sut-lohmann et al., 2019; 
Meagher, 2000). 

	z Phytostabilization (also referred to as phyto-
immobilization or in  situ inactivation) is 
the  process of stabilizing contaminants within 
the  plant root zone, thereby reducing their 
mobility and bioavailability, and consequently 
minimizing the risk of spreading toxic substances 
into the  surrounding environment (Zine et al., 
2020; Bradshaw, 2003; Latif et al., 2023).
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Thanks to the multifunctionality of these mechanisms, 
phytoremediation represents a  promising tool for 
soil restoration in post-conflict zones, simultaneously 
ensuring environmental safety and biodiversity 
conservation.

4.2	 Potential Plant Species 
	 for Phytoremediation in Ukraine

The effectiveness of phytoremediation interventions 
largely depends on the careful selection of plant species 
with appropriate morpho-physiological traits. Key 
considerations include root system depth, adaptability 
to specific soil types and climatic conditions, the nature 
of existing contaminants, and the  plant’s ability to 
efficiently uptake or neutralize toxic compounds 
(Matanzas et al., 2021; Ali et al., 2024; Oubohssaine 
and Dahmani, 2024).

Preference is given to the use of autochthonous (native) 
plant species, as they are better adapted to local 
environmental conditions, exhibit higher resilience to 
stress factors, and require less intensive agricultural 
management compared to introduced species (Alotaibi 
et al., 2021; Singh et al., 2022; Oubohssaine and 
Dahmani, 2024).

In the  context of military-technogenic contamination, 
the use of plants capable of accumulating, stabilizing, 
and degrading soil contaminants becomes particularly 
important. For Ukraine, with its temperate climate, 
the most promising species include:

	z Brassica napus L. – effective in the removal of heavy 
metals, particularly lead (Pb) and cadmium (Cd), 
and possesses high biomass, which contributes to 
the reduction of soil toxicity (Turan and Esringu, 
2007; Ali et al., 2013); 

	z Helianthus annuus L. – exhibits a  high capacity 
for phytoextraction of heavy metals as well 
as nitroaromatic compounds, including 
trinitrotoluene (TNT) (Lee et al., 2007), and is 
used for remediation of uranium-contaminated 
soils and groundwater (Lee and Yang, 2010);

	z Festuca arundinacea Schreb. – serves as 
a  phytostabilizer, reducing erosion and 
immobilizing contaminants in  the  soil, including 
diesel-contaminated sites (Borowik et al., 2019; 
Afegbua et al., 2023).

	z Vetiveria zizanioides (L.) Roberty – efficiently 
detoxifies explosive compounds (Alkorta and 
Garbisu, 2001; Goren et al., 2021) and is an ideal 
species for uranium phytoextraction (Pentyala 
and Eapen, 2020); suitable for a  wide range 
of phytoremediation applications (Danh et al., 

2009). Hyperaccumulation of metals and high 
metal tolerance in  this species are genetically 
encoded traits.

Among perennial herbaceous crops, promising 
species for phytoremediation in  Ukraine include 
Lolium perenne L., Festuca rubra L., Agrostis tenuis 
L., and Trifolium pratense L., which form dense turf, 
prevent erosion, and stabilize the  surface soil layer 
(Pulford & Watson, 2003). In addition, these species 
actively interact with the  rhizosphere microbiota, 
promoting  the  development of microbial consortia 
that accelerate the detoxification of organic compounds 
(Glick, 2012).

Recently, energy crops such as Miscanthus × giganteus 
J.M Greef & Deuter ex Hodk & Renvoize and Phalaris 
arundinacea L. have attracted particular attention, as 
they combine the  ability to accumulate heavy metals 
with high biomass productivity suitable for bioenergy 
applications. This dual functionality provides both 
environmental soil remediation and renewable energy 
production (Korzeniowska et al., 2015; Nsanganwimana 
et al., 2021; Romantschuk et al., 2024).

Woody plants are increasingly recognized as effective 
components of phytoremediation strategies due 
to their morphophysiological and ecological traits. 
They possess deep and branched root systems, large 
biomass, long life cycles, and the ability to accumulate 
or stabilize contaminants in soil, making them suitable 
for long-term ecological rehabilitation programme. 
Moreover, woody plants establish close interactions 
with rhizosphere microbiota, including plant growth-
promoting rhizobacteria (PGPR) and arbuscular 
mycorrhizal fungi, which activate mechanisms for metal 
solubilization, transformation of organic pollutants, 
and enhancement of plant stress tolerance (Kumar et 
al., 2018; Glick, 2012).

Among the  most promising woody plants for 
phytoremediation in Ukraine are:

	z Morus alba L. – a  well-known heavy metal 
phytoaccumulator, particularly of Pb, Cd, and Cu, 
demonstrating high tolerance to contaminated 
soils (Huang et al., 2018; Lei et al., 2019; Rafati et 
al., 2020). Suitable for buffer zones or as part of 
protective shelterbelts.

	z Elaeagnus angustifolia L. – capable of atmospheric 
nitrogen fixation, Cd, Ni, and Pb phytostabilization, 
and highly tolerant to saline and degraded soils, 
including areas contaminated with explosive 
residues (Khamzina et al., 2009; Zhang et al., 
2022; Thompson et al., 2024; Sui et al., 2025). 
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	z Elaeagnus multiflora Thunb. – belongs to 
Elaeagnaceae, a family known for symbiosis with 
Frankiaceae actinomycetes, enabling nitrogen 
fixation. While specific studies on E.  multiflora 
symbiosis are lacking, its close relative 
E.  angustifolia has demonstrated this ability, 
suggesting potential nitrogen-fixing capability 
beneficial in marginal agroecosystems.

	z Prunus domestica L. – tolerant to elevated Cu and 
Zn concentrations, capable of phytostabilization 
in buffer zones near industrial pollution sources. 
Exhibits high adaptability to urban and industrial 
environments (Filipovic-Trajkovic et al., 2012; 
Rusu et al., 2024).

	z Cydonia oblonga Mill. – accumulates Cd, Ni, and 
Cu, particularly in  roots and leaves, making it 
suitable for phytoextraction schemes on heavily 
contaminated soils (Topdemir and Gür, 2005; 
Ghaderian et al., 2007; Filipovic-Trajkovic et al., 
2012).

	z Salix spp. (willow) – among the  most widely 
studied genera for phytoremediation due to 
rapid growth, high uptake capacity, and broad 
ecological amplitude; effective in removing Zn, Cd, 
Pb, and degrading organic pollutants, including 
petroleum hydrocarbons and explosives (Pulford 
and Watson, 2003; Cao et al., 2018, 2022; Jiang et 
al., 2024).

	z Populus spp. long-term field experiments 
and practical applications demonstrate its 
effectiveness in  removing heavy metals (Zn, 
Cu, Ni, Cd, Cr, Se) and a  wide range of organic 
contaminants, including TNT, petroleum 
products, BTEX compounds (benzene, toluene, 
ethylbenzene, xylene), explosive residues, 
and trichloroethylene (TCE). Poplar is widely 
used in  phytoremediation systems in  Europe, 
the  USA, and other regions due to its ability to 
efficiently accumulate, stabilize, and transform 
various toxicants in  both soil and water, making 
it a  versatile and effective species for ecological 
rehabilitation (Gordon et al., 1998; Robinson et 
al., 2000; Pajević et al., 2009; Rafati et al., 2011; 
Hasanuzzaman et al., 2020; Xi et al., 2021; Miletić 
et al., 2024). 

	z Juglans regia L. – capable of accumulating Cu, 
Zn, and Cr, predominantly in roots; also shows 
potential for As phytoextraction and Cr, Ni, 
Pb phytostabilization, making it suitable for 
multi-contaminant remediation sites (Saqib et 
al., 2013; Ozen and Yaman, 2016; Mataruga et al., 
2020).

	z Robinia pseudoacacia L. – nitrogen-fixing, 
drought-tolerant, and tolerant to high heavy metal 
concentrations; effectively stabilizes soils in mine 
tailings, quarries, and Zn/Pb-contaminated areas. 
Its fast growth and nitrogen-fixing symbiosis make 
it suitable for the  restoration of degraded lands 
and heavy metal-contaminated soils (Uselman et 
al., 2000; Ussiri et al., 2006; Yuksek and Yuksek, 
2011; Vlachodimos et al., 2013; Yang et al., 2015; 
Fan et al., 2018).

	z Acer spp. – promising species for 
phytoremediation of heavy metal-contaminated 
soils, capable of accumulating Cu, Pb, and Zn 
in  urban and industrial settings, making them 
suitable for green spaces in  polluted areas 
(Migeon et al., 2009; Hauptvogl et al., 2020; Naz et 
al., 2022; Stanisław, 2023).

Woody plants interact closely with rhizosphere 
microbiota, which significantly influences 
the  effectiveness of phytoremediation. In  particular, 
PGPR strains of Pseudomonas, Bacillus, and Azospirillum 
enhance metal bioavailability through the  secretion 
of siderophores, organic acids, and phosphatases 
(Glick, 2010). Mycorrhizal fungi (Glomus intraradices, 
Rhizophagus irregularis) improve nutrient uptake, 
immobilize heavy metals within the  mycelium, and 
reduce their translocation to aboveground biomass 
(González-Chávez et al., 2004).

The use of woody plants in combination with microbial 
consortia creates bioengineered phytoremediation 
systems capable of accelerating detoxification and 
restoring soil biota (Abhilash et al., 2009; Ma et al., 
2016; Liu et al., 2024). This integrated approach 
represents a  promising strategy for the  ecological 
rehabilitation of degraded territories in  Ukraine, 
particularly in the post-conflict period.

Beyond direct remediation, woody species provide 
additional ecosystem services, including erosion 
control and soil structure restoration, habitat provision 
for fauna, CO₂ sequestration and carbon footprint 
reduction, and the  formation of landscape buffers 
around contaminated sites (Pulford and Watson, 2003).

Conclusions
Contemporary military activities in  Ukraine lead to 
multifaceted soil degradation, manifested as physical 
disruption of soil structure, chemical contamination by 
military-derived toxicants, and biological suppression 
of soil microbiota. The  main pollutants include 
heavy metals (Pb, Cd, Cu, Zn), residues of explosive 
compounds (TNT, RDX), petroleum products, and 
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polycyclic aromatic hydrocarbons, which disrupt 
biogeochemical cycles and reduce the  productivity of 
agroecosystems. Soil microbiota serves as a  sensitive 
indicator of ecological status and a  key factor 
in  restoring trophic interactions within disturbed 
landscapes. Its structure and functional activity directly 
reflect the  level of toxic load and the  ecosystem’s 
capacity for self-regulation. The use of microbiological 
indicators – such as dehydrogenase, phosphatase, and 
nitrate reductase activity, as well as the  abundance 
of key trophic groups – should be an integral part 
of monitoring degraded territories. Functional soil 
assessments, particularly enzyme activity analysis, are 
currently considered a central tool for understanding 
the processes occurring in degraded or contaminated 
ecosystems. Bioremediation technologies, including 
phytoremediation, phytostabilization, and microbial 
biostimulation, represent a  promising approach for 
the  rehabilitation of contaminated lands, particularly 
in  zones affected by active military operations. 
The application of adapted plant species in combination 
with microbial consortia not only reduces toxicant 
concentrations but also gradually restores ecological 
balance in  the  soil environment. A  major priority 
in the coming years is the establishment of a national 
system for assessing military-induced soil degradation, 
implementation of long-term biomonitoring 
programme, and development of integrated restoration 
technologies that combine biological, agronomic, and 
landscape-ecological approaches. The  integration of 
scientific research, environmental policy, and practical 
reclamation measures will be crucial for returning 
degraded lands to productive use and restoring 
the resilience of Ukraine’s agroecosystems.
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